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ABSTRACT

The practical application of stochastic approximation

methods require a reliable means to stop the iterative pro-

cess when the estimate is close to the optimal value or when

further improvement of the estimate is doubtful. Conven-

tional ideas on stopping stochastic algorithms employ prob-

abilistic criteria based on the asymptotic distribution of the

stochastic approximation process, often with the parame-

ters of the distribution determined by sequential estima-

tion. Difficulties may arise when this approach is applied

to small (finite) samples. We propose a different approach

that uses the notion of an idealized process as a companion

to the stochastic approximation. A discussion of this ap-

proach to stopping stochastic approximation is offered in

the context of a simple example, including some empirical

results.
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1. INTRODUCTION

Introduced by Robbins and Monro [11] in 1951,
stochastic approximation is the adaptation of iterative
optimization and root-finding methods to stochastic
problems. Robbins and Monro proved convergence in
probability of a sequence of estimates to an optimal
value, results which have since been strengthened to
almost sure convergence. Yet these results only hold
asymptotically. In practical applications the process
must have a stopping condition, and some statements
on when to stop the procedure or about the quality of
the solution obtained must be made.

The need for a stopping rule for stochastic approx-
imation was recognized by Kiefer and Wolfowitz [4].
Since that time this issue has been extensively studied.
Burkholder [1] proposed estimators for the asymptotic

distribution and derived sufficient conditions for those
estimators to converge almost surely. Chow and Rob-
bins [2] developed a method to sequentially determine
a bound on the mean of a continuous random variable
with unknown variance. Recognizing the applicability
of this procedure to the problem of stopping stochastic
approximation they suggested the rule: stop as soon as
the length of the confidence interval based on asymp-
totic normality of the sample means is smaller than
2δ for some δ > 0, or, equivalently, stop as soon as
the estimated standard deviation of the sample mean
is sufficiently small.

Since this initial work much of the effort in stopping
stochastic approximation has been on the estimation
of the parameters of the asymptotic distribution in or-
der to apply one of the above criteria. Sielken [12]
and Stroup and Braun [16] both improved on the pio-
neering work of Burkholder, applying sequential esti-
mation to calculate estimators and develop confidence
intervals in one dimension. These results were later
extended to the multi-dimensional case [9, 17]. The
conditions that guarantee the asymptotic validity for
sequentially estimated parameters were established in
[3].

2. PROBLEM FORMULATION

2.1 The Stochastic Approximation Process

We consider only the unconstrained case. Suppose
θ ∈ Rp is a vector with components representing con-
trol parameters. Let Q(θ, ω) denote the observed re-
sponse as a function of θ and the stochastic effect ω.
The function of interest is L(θ) = E[Q(θ, ω)], the ex-
pected response at θ. The objective is to find the value
θ∗ that minimizes L(θ):

θ∗ = arg min
θ

L(θ).

If the parameters θ are continuous and the solu-
tion space can be assumed closed and convex, then the



problem lends itself to solution with a gradient-based
optimization method. We choose an initial estimate
θ̂0 and update it with the following scheme:

θ̂k+1 = θ̂k − akGk(θ̂k, ω) (1)

where Gk(θ̂k, ω) ∈ Rp is some (noisy) input infor-
mation related to the gradient of the process being
studied [4, 11]. A general discussion of the stochas-
tic approximation method may be found in [15]. The
asymptotic properties of θ̂k are well-known [6], and un-
der relatively mild conditions the sequence of iterates
generated by (1) converges to θ∗ almost surely. See,
for example, [8] or [5]. Additionally, when properly
scaled, the distribution function of the iterates, which
we denote Fk, is asymptotically normal. We denote
the asymptotic distribution by F ∗.

2.2 Stopping the Approximation Process

Since the estimates θ̂k are random, the preferred ap-
proach is to consider the probability that some toler-
ance conditions are met. Ideally we prefer conditions
of the form

Pθ̂k

(
‖ θ̂k − θ∗ ‖ < δ

∣∣∣ θ̂0

)
≥ 1− α (2a)

Pθ̂k

(
|L(θ̂k)− L(θ∗)| < δ

∣∣∣ θ̂0

)
≥ 1− α (2b)

(see also [9, 10]). In a practical sense these conditions
would allow us to compute the 1 − α confidence el-
lipse about θ̂k. Given an α ∈ [0, 1] and δ > 0, we
stop at time κ(α, δ) equal to the smallest k such that
either condition in (2) is true. To formalize the prob-
lem, a customary approach is to define B(θ̂k, δ), a ball
of radius δ about θ̂k, and let κ be the first time the
confidence ellipse based on (2) is contained within the
ball.

Unfortunately, direct calculation of the probabilities
in (2) is not possible since the distribution of θ̂k (even
the distributional form) is generally not known. Some
manner of estimation of the distribution function Fk

is essential, and if convergence in distribution is suf-
ficiently fast, one solution is to use F ∗ in lieu of Fk

and estimate the parameters of F ∗. Since the form
of the distribution F ∗ is known, this is a well-defined
problem.

The method requires knowledge of the covariance
matrix Σ of the asymptotic normal distribution, and
the Hessian at the optimal point, H(θ∗), of the un-
derlying function. These matrices are not commonly
available, so the usual procedure is to estimate them
sequentially as part of the iteration. Given initial es-
timates for Σ and H(θ∗), these estimates are then
updated at each step (or perhaps every m steps) as

the iterative process proceeds, and the estimators are
asymptotically correct.

This approach is less satisfactory for finite-sample
(non-asymptotic) stochastic approximation. The diffi-
culties extend beyond the fact that there may not be
sufficiently many iterations to compute reliable esti-
mates for Σ and H(θ∗). Finite-sample behavior could
differ significantly from asymptotic behavior. This is
a difficulty with the basic assumption that F ∗ can re-
place Fk in the calculation of the confidence ellipses.
The assumption is a good one only asymptotically.

3. IDEALIZED PROCESSES

The concept of idealized processes is to develop a pa-
rameterized companion to the original process whose
properties are known when the parameter is some pos-
itive number (giving the idealized process), and whose
behavior reflects that of the original when the param-
eter is zero. The expectation is that conclusions we
draw about the idealized process can be related to the
original process in some way determined by the pa-
rameter.

This is a relatively new idea, and the theoretical
justification for such a procedure is incomplete. The
applicability of this method, however, has been shown
for parameter estimation in maximum likelihood esti-
mation problems, among others [13, 14]. We intend to
demonstrate by example that this method can be used
to stop stochastic approximation processes as well.

The idea of using idealized processes for parameter
estimation was advanced by Spall [13, 14]. Spall’s for-
mulation sought an estimate θ̂ for a parameter vector
θ from a set of data whose distribution depended on
θ and a known scalar ε. When the sample is small,
it is difficult to say much about the probabilities of θ̂
because the distributions are unknown. One approach
is to construct a parameterized process producing sta-
tistically similar data and resulting in an estimate θ̃
where the probabilities of θ̃ are known, and then look
for conditions where the probabilities of θ̂ are close to
those of θ̃ irrespective of the sample size.

We apply the same principle, but to the sequence
of iterates from a stochastic approximation process.
The idea is to establish conditions under which the
probabilities of θ̂k are close to those of θ̃k, which are
known. The resulting information is used to decide
whether to stop the process or, if stopped, to determine
the probability of being close to θ∗.

The stochastic approximation process in its most
general form is

θ̂k+1 = Tk(θ̂k, ω) (3a)



where Tk is some transformation process and ω de-
notes the random component which manifests itself as
noise in the measurements of the loss function or its
gradient. In the case of equation (1), Tk is a nonlin-
ear operator with Tk(θ̂k, ω) = θ̂k−αkGk(θ̂k, ω), where
Gk(θ̂k, ω) is a noisy estimate of the gradient of L(θ̂k).
We parameterize the transformation with a scalar η:

θ̂k+1 = Tk(θ̂k, ω; η). (3b)

For some η = η0 > 0 the sequence of iterates produced
by (3b) is the same1 as (3a). For η = 0 (3b) produces
a sequence of idealized iterates in the sense that the
probabilities for the iterates are known for each k. For
convenience we denote the sequence of iterates from
the idealized process by θ̃k, and the distribution func-
tion of these iterates by Gk. (Note: when there is no
confusion, we will often drop the ω from the expression
for Tk.)

The idealized process Tk(θ; 0) could represent a sim-
plified process that converges to the same θ∗, but more
frequently the idealized process merely mimics some of
the asymptotic properties of the true process. It can-
not generally be shown (nor is it necessary to show)
that θ̃k → θ∗. It is only necessary that the parame-
terized transformation process generate a sequence of
dependent observations with distributional properties
(other than location) that are similar to those of θ̂k.

In general, it is not easy to determine a suitable
parameterization for a general process. In the example
that follows we assume the parameterization is known
for analytical purposes, but further work in necessary
before a systematic method of parameterization can
be presented.

The justification for this approach is found in the
use of the Skorokhod representation theorem to map
the original process into another process on a different
space where an analysis of the properties of the process
is easier.

The general approach is to simplify the transforma-
tion process to generate an idealized process that is
nearly identical up to some order. If the differences
are small enough to be ignored, then the probability
distributions should be close as well.

Formalizing this argument gives the following the-
orem: Let θ̂k = Tk(θ̂k−1; η0) be a stochastic approxi-
mation process with mean sequence θ̄k and covariance
process Σk. Let θ̃k = Tk(θ̃k−1; 0) be a linear ideal-
ized process relative to θ̂k (linearized about θ0), and
let θ̃k have covariance process Σ̃k. Assume the con-
ditions required for the convergence of θ̂k → θ∗ hold.
Let S(θ) be any symmetric region about the point θ.

1By the same we mean statistically indistinguishable.

Let Fk(θ̄k, Σk) be the true distribution of θ̂k, and let
Gk(θ̄k, Σ̃k) be the idealized distribution of θ̂k. Then

PFk

(
θ̂k ∈ S(θ∗)

)
−PGk

(
θ̂k ∈ S(θ∗)

)
= O

∥∥∥ θ̂k − θ0

∥∥∥
2

.

(4)

4. EXAMPLE

We take as an example the idealized process formed
by linearizing the gradient. This results in an autore-
gressive process whose properties can be determined
analytically. Consider the process given by (1) where
Gk(θ, ω) = g(θ) + ek(ω) is the noisy gradient of L(θ).
Here Tk(θ, ω) = θ − akg(θ)− akek(ω). The first order
Taylor expansion of the gradient about a point θ0 is

g(θ) = g(θ0) + H(θ0)(θ − θ0) + O(‖ θ − θ0‖2 Ip).

The notation H(θ0) = ∇g(θ0) is shorthand for
∇g(θ)| θ=θ0

, the Jacobian of g evaluated at θ0. Since
g is the gradient of L, the Jacobian of g is the Hessian
of L, and we use the function H to denote this. The
natural parameterization is

Tk(θ; η) = θ − akg(θ0)− akH(θ0)(θ − θ0)

+ η O(‖θ − θ0‖2 Ip)− akek. (5)

When η = η0 (for some η0) we have the true process
(1) with Gk(θ, ω) = g(θ)+ek(ω). When η = 0 we have
the approximation process

θ̃k+1 = θ̃k − akg(θ0)− akH(θ0)(θ̃k − θ0)− akek. (6)

Since Tk(θk; 0) is linear in the random components,
it follows from repeated substitution that each iterate
θ̃k+1 in 6 may be expressed as a deterministic vari-
able (depending on k) plus the sum of multiples of the
random variables {e0, e1, . . . , ek}. If we can assume
nice behavior of the ek, then the distribution function
Fθ̃k

is known for any k. This distribution is used to
compute κ(α, δ) for some α and δ according to (2).

We illustrate this idea by using a function from the
Moré et al. [7] suite of optimization problems, the
so-called variably dimensioned function in two dimen-
sions, to generate stochastic data and to identify the
linear idealized process as a test of the procedure. Let
θ = [t1 t2]T ∈ R2 and LVD : R2 → R. Then the
variably dimensioned function is defined as

LVD(θ) = (t1 − 1)2 + (t2 − 1)2

+ (t1 + 2t2 − 3)2(1 + (t1 + 2t2 − 3)2).

The gradient is

gVD(θ) =
[

4t1 + 4t2 + 4(t1 + 2t2 − 3)3 − 8
4t1 + 10t2 + 8(t1 + 2t2 − 3)3 − 14

]



This function satisfies the conditions for convergence
of (1), and there is a unique global minimum located
at θ∗ = [1 1]T.

Suppose the form of the loss function LVD is not
known, but we are able to provide inputs θ and observe
the noisy gradient. We assume the components of
the noise ek are independent and normally distributed
with mean zero and variance σk

2. Then we model
the process as follows: for a sequence of inputs {θk}
we have a sequence of observations {Yk} generated by
Yk(θk, ω) = gVD(θk) + ek(ω). Let θ̂k = [t̂1 t̂2]T and
θ̃k = [t̃1 t̃2]T. Using Robbins-Monro iteration the true
(η = η0) process is

θ̂k+1 = θ̂k − akgVD(θ̂k)− akek

=
[

t̂1
t̂2

]

−ak

[
4t̂1 + 4t̂2 + 4(t̂1 + 2t̂2 − 3)3 − 8

4t̂1 + 10t̂2 + 8(t̂1 + 2t̂2 − 3)3 − 14

]

−akek

and the idealized process is

θ̃k+1 =
[

t̃1
t̃2

]
− ak

[
4t̃1 + 4t̃2 − 8

4t̃1 + 10t̃2 − 14

]
− akek.

The distribution function Fk is unknown, and im-
possible to calculate. However, it can be approximated
using a Monte Carlo experiment. For this example, the
distribution function for the idealized process, F̃k, is
the sum of bivariate normal random variables, and can
be calculated exactly. The Robbins-Monro algorithm
with step size ak = a/k was stopped after κ steps us-
ing θ̂0 = θ∗ and σk = 10. The scatterplots in Figure 1
were generated by taking 100,000 such runs.

It is apparent from the plots that Gk is a better
approximation to Fk than F ∗, even for high iteration
counts. One measure of how well Gk approximates Fk

when θ̂0 = θ∗ is to look at the Kullback-Leibler dis-
tance between the sample probability mass function
and values of the distribution of the idealized process.
In this example, computations show that the Kullback-
Leibler distance is actually decreasing with increas-
ing iterations. This is mostly an artifact of choosing
to expand about θ∗. An expansion about the initial
point θ̂0, say, leads to an approximation that is ini-
tially good, but gets worse as the iteration progresses.
In this instance one might ”restart” the process by re-
linearizing the gradient (at the current point, say) and
continuing the process from there.

(a) κ = 100.

(b) κ = 10, 000.

Figure 1: The figures above show a scatterplot of θ̂κ

overlayed with the approximate 95th percentile ellipse
of the distribution (solid ellipse) for the value of κ

shown when θ̂0 = θ∗. The 95th percentile ellipse for θ̃κ

is indistinguishable from the solid ellipse in this scale,
and therefore is not shown. The dashed ellipse repre-
sents the 95th percentile of the asymptotic distribution
of θ̂κ.



5. CONCLUSIONS

There currently is no systematic way to select the
idealized process or to evaluate alternatives. The prob-
lem with the linearized transformation is that informa-
tion on the Hessian is needed, and in a practical ap-
plication it must be estimated from the observations.
This was a drawback of the sequential estimation ap-
proach in small finite samples, and with a linearized
transformation we cannot escape it here (though it
may be better to use this information to estimate Fk

rather than F ∗). Other autoregressive processes show
potential.

Additional advantages to this approach include rela-
tive computational efficiency compared to other meth-
ods and the potential to take into account in an ex-
plicit manner the impact of a poorly selected θ̂0. The
questions that remain point out the need for a more
general theory for idealized processes.
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